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Learning Without State-Estimation in Partially ObservableMarkovian Decision ProcessesSatinder P. Singhsingh@psyche.mit.edu Tommi Jaakkolatommi@psyche.mit.eduDepartment of Brain and Cognitive Sciences (E10)Massachusetts Institute of TechnologyCambridge, MA 02139 Michael I. Jordanjordan@psyche.mit.eduAbstractReinforcement learning (RL) algorithms pro-vide a sound theoretical basis for buildinglearning control architectures for embeddedagents. Unfortunately all of the theory andmuch of the practice (see Barto et al., 1983,for an exception) of RL is limited to Marko-vian decision processes (MDPs). Many real-world decision tasks, however, are inherentlynon-Markovian, i.e., the state of the environ-ment is only incompletely known to the learn-ing agent. In this paper we consider only par-tially observable MDPs (POMDPs), a use-ful class of non-Markovian decision processes.Most previous approaches to such prob-lems have combined computationally expen-sive state-estimation techniques with learn-ing control. This paper investigates learningin POMDPs without resorting to any formof state estimation. We present results aboutwhat TD(0) and Q-learning will do when ap-plied to POMDPs. It is shown that the con-ventional discounted RL framework is inad-equate to deal with POMDPs. Finally wedevelop a new framework for learning with-out state-estimation in POMDPs by includ-ing stochastic policies in the search space,and by de�ning the value or utility of a dis-tribution over states.1 INTRODUCTIONA diverse variety of sequential tasks of interest to ar-ti�cial intelligence researchers can be formulated ab-stractly as embedded agents seeking to control theirenvironment by executing actions. The agents areusually equipped with sensors that provide informa-tion about the state of the environment. Reinforce-ment learning (RL) techniques provide a sound the-oretical basis for building learning control architec-tures for embedded agents (Barto et al., to appear,

1990). Unfortunately all of the elegant theory of RL islimited to Markovian decision processes (MDPs) (Sut-ton, 1988; Watkins and Dayan, 1992; Dayan, 1992,Jaakkola et al., 1994, Tsitsiklis, to appear). Formu-lating a given problem as an MDP requires that theagent's sensors return the complete state of the envi-ronment. The word state is used here as in controltheory to mean all the information necessary to makethe prediction of the future states of the environmentdependent only on the current state and the futureactions and independent of the past states.While there are interesting problems that can be for-mulated as MDPs, a great many real-world decisionproblems have hidden state, i.e., are inherently non-Markovian. One can always apply RL algorithms de-veloped speci�cally for Markovian processes to non-Markovian decision processes (N-MDPs) simply bytreating the agent's sensor readings as state descrip-tions. There is some empirical evidence that such atechnique can work well on particular non-Markovianproblems (e.g., Barto et al., 1983). However, as yetthere is no theory of RL for N-MDPs, and no char-acterization of the class of N-MDPs on which con-ventional RL algorithms will perform reasonably well.The general hope that the performance of RL algo-rithms will degrade gracefully as the degree of non-Markovianness is increased in a given decision problemis unfounded, because it is easy to construct decisionproblems, where failure to distinguish between just twostates can lead to an arbitrarily high absolute loss inperformance (see Section 3.1 for an example; also, seeWhitehead, 1992).We show why it is di�cult to extend the conventionaldiscounted RL framework to environments with hiddenstate. We present results about what TD(0) (Sutton,1988) and Q-learning (Watkins, 1989) will do whenapplied to a class of N-MDPs. Finally we develop anew framework for learning without state-estimationin such N-MDPs by including stochastic policies in thesearch space, and by de�ning the value, or utility, of adistribution over states.
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2 PREVIOUS APPROACHESPrevious approaches to learning in N-MDPs have fo-cused on methods that combine some form of state-estimation with learning control. Such approachesbuild an internal representation of the state of theenvironment by combining sensor readings with pastinternal representations (Whitehead and Lin, 1993).Several di�erent forms of internal representations havebeen used: tapped-delay line representations for higherorder Markov problems (e.g., Lin and Mitchell, 1992),recurrent neural network based representations (Linand Mitchell, 1992), and probability distributions overan underlying state space based on the theory ofpartially observable MDPs (Sondik, 1978; Chrisman,1992a, 1992b; McCallum, 1993). In addition, White-head and Ballard (1990) have proposed using percep-tual actions in robots to gather multiple sensor read-ings, one of which is selected as representing the stateof the environment.A common drawback of all the above methods is thatthe state estimation component is always based onstrong assumptions about the environment. For ex-ample, it is usually assumed that the number of statesis known in advance. A further drawback is that stateestimation is computationally expensive and can re-quire a large amount of data. Even if the true en-vironment has a �nite number of states, using state-estimation can result in a continuous space of esti-mated states making the search problem di�cult (e.g.,Sondik, 1978). Also the computations performed bythe learning control component are wasted until thestate-estimation component becomes accurate enoughto be useful. Finally, in learning policies that mapestimated states to actions, such methods depart fun-damentally from conventional RL architectures thatlearnmemory-less policies, i.e., learn policies that mapthe immediate observation of the agent into actions.This paper studies memory-less policies in a class ofN-MDPs.3 PROBLEM FORMULATIONWe assume that there is an inaccessible MDP underly-ing the non-Markovian decision problem faced by theagent. Let the state set of the underlying MDP beS = fs1; s2; s3; : : : ; sNg. Let the set of actions avail-able in each state be denoted A. The probability ofa transition to state s0 on executing action a in states is denoted P a(s; s0). Note that this transition prob-ability is independent of the states prior to reachingstate s (the Markov assumption). The expected valueof the payo� received on executing action a in states is denoted Ra(s). The actions the agent executesconstitute its control policy. The task for the learn-ing architecture is to determine a control policy thatmaximizes the expected value of the in�nite-horizonsum of discounted payo�s received by the agent. A

discount factor 0 < 
 < 1 allows the payo�s distantin time to be weighted less than the more immediatepayo�s. Such a policy is called an optimal policy. It isknown that for every �nite MDP there exists a station-ary deterministic policy, �� : S ! A that is optimal(see Ross, 1983). Therefore, in MDPs the agent canrestrict its search to the �nite set of stationary deter-ministic policies.In N-MDPs the control agent has sensors that returnsome estimate of the state of the environment. In par-ticular we will assume that the estimates are elementsof X = fX1; X2; X3; : : : ; XMg, where 0 < M . Whenthe underlying, non-observable MDP is in state s, thesensor reading, or observation, is X with �xed proba-bility P (Xjs). Note that P (Xjs) is independent of theagent's policy. Such an N-MDP is called a partiallyobservable MDP, or POMDP (e.g., Sondik, 1978). Inthis paper we will consider only POMDPs. Henceforthwe will use the word state to refer to an element of theset S, and the word observation to refer to an elementof the set X .In this paper we will prove negative results by givingexamples from a subclass of POMDPs that have thespecial property that the observations are labels fordisjoint partitions of the underlying state space S, i.e.,P (Xijs) = 0 for all s 62 Si � S, and P (Xijs) = 1 for alls 2 Si. In a pictorial representation of such a POMDP(see Figures 1 to 4), an ellipse around a set of stateswill be used to represent the fact that the enclosedstates belong to the same observation.3.1 STOCHASTIC POLICIESConsider the possible loss in performance when one ap-plies a conventional RL algorithmdeveloped for MDPsto a POMDP.Fact 1: Just confounding two states of an MDP canlead to an arbitrarily high absolute loss in the returnor cumulative in�nite-horizon discounted payo�.Proof: Figure 1 presents a POMDP with two states,one observation, and two actions. The optimal pol-icy in the underlying MDP returns a payo� of R ateach time step. Therefore the optimal return in theunderlying MDP is R1�
 . At best the RL algorithmapplied to a POMDP will �nd the best deterministicmemory-less policy.1 In the POMDP shown in Fig-ure 1 there are only two deterministic policies, becausethere is only one observation and two actions. In thebest case, the agent can get a payo� of R followed by1We conjecture that in general Q-learning will not�nd the best deterministic memory-less policy. Unlikethe Markov case, the Q-values found by Q-learning inPOMDPs will depend on the control policy followed duringlearning. Therefore it may be di�cult to make any gen-eral statements about Q-learning without restricting thelearning policy (see Section 5.1).
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an in�nite sequence of �R's. Therefore the best returnfor a deterministic memory-less policy in the POMDPof Figure 1 is R � 
R1�
 . The loss, 2
R1�
 , can be madearbitrarily high by increasing R. 2Fact 1 shows that RL algorithms do not degradegracefully with the degree of non-Markovianness in aPOMDP. We now show that the guarantee of a deter-ministic optimal policy does not hold for POMDPs.Fact 2: In a POMDP the best stationary stochasticpolicy can be arbitrarily better than the best station-ary deterministic policy.Proof: Figure 1 shows a POMDP with two states,one observation, and two actions, that has a station-ary stochastic policy which beats all stationary deter-ministic policies. As noted before, the best stationarydeterministic policy can at best return a payo� of Rfollowed by a in�nite sequence of�R's. The stationarystochastic policy that picks action A with probability0:5 and action B with probability 0:5, gets an expectedpayo� of 0:0 at every time step. The resulting increasein the return, R(2
�1)1�
 , can be made arbitrarily high byincreasing R and setting 
 > 0:5. 2
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Figure 1: Need for Stochastic Policies. This �gureshows a POMDP for which the optimal stationary pol-icy is stochastic. The underlying MDP has 2 states and2 actions A and B. The payo� for each transition, Ror �R, is labeled along the transition. The agent seesonly one observation. The ellipse around the states 1aand 1b indicate that both states yield the same obser-vation. This �gure is used to prove Facts 1 to 4.Therefore, we propose learning control in the spaceof stationary stochastic memory-less policies as an al-ternative to the state-estimation based approaches fordealing with POMDPs. As shown above by example,in POMDPs the best stochastic policy can be signi�-

cantly better than the best deterministic policy. How-ever, the following fact shows that despite expandingthe search space to stationary stochastic policies, onestill has to pay a cost for having hidden state.Fact 3: The best stationary stochastic policy in aPOMDP can be arbitrarily worse than the optimalpolicy in the underlying MDP.Proof: In Figure 1 the best deterministic policy in theunderlying MDP would yield a return of R1�
 As notedbefore, the best stationary stochastic policy wouldyield a expected return of 0:0. The di�erence can bemade arbitrarily high by increasing R. 2Fact 4: In POMDPs the optimal policies can be non-stationary.Proof: Figure 1 shows that the non-stationary policythat picks actions A and B alternately will at worstreturn a payo� of �R followed by an in�nite sequenceof R's which is signi�cantly better than the best sta-tionary policy (for 
 > 0:5). Again, the di�erence canbe made arbitrarily large by increasing R. 2However, searching in the space of non-stationary poli-cies could be prohibitively expensive. Besides, a non-stationary policy is precluded by our intention of learn-ing memory-less policies because a non-stationary pol-icy requires the memory of time elapsed. If mem-ory were allowed, all kinds of memory-based state-estimation techniques could be included and then it isnot clear whether there is any advantage to be gainedby learning non-stationary policies. Indeed, the proofof Fact 4 also shows that the optimal non-stationarypolicy in POMDPs can be arbitrarily worse than theoptimal memory-less policy in the underlying MDP.In the rest of this paper, a control policy, �, assignsto each observation a probability distribution over ac-tions. The conventional deterministic policies are aspecial case of stochastic policies. All policies referredto in this paper will be assumed stationary unless oth-erwise stated. We will use the symbol � to denote thespace of stochastic policies de�ned on the observationspace of a POMDP. Note that in general � is not equalto the set of stochastic policies de�ned over the statespace of the underlying MDP. The return for, or thevalue of, a �xed policy � 2 � in POMDPs is de�nedas the expected value of the in�nite-horizon sum ofdiscounted payo�s, just as in the case of MDPs.Assumption 1: Throughout the rest of this paperwe will assume POMDPs that have the property thatthe underlying MDPs are ergodic for every stationarypolicy.Note that Facts 1 to 4 are also true for ergodicPOMDPs. This can be seen by modifying the POMDPin Figure 1 and making it ergodic by adding an � > 0
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probability transition from state 1a to state 1b for ac-tion A, and from state 1b to state 1a for action B. Theprobability of the self-loops will have to be reduced bya corresponding �. The quantity � can be made smallenough to ensure that the modi�cations have a negli-gible e�ect on the returns.4 EVALUATING A FIXED POLICYIn the Markov case, the value of executing policy �when the starting state of the environment is s, isV �(s) = E�fRa0(s0)+
Ra1 (s1)+
2Ra2(s2)+: : : js0 =sg, where si and ai are the state and action at timestep i, and E� is the expectation symbol under theassumption that action ai is chosen according to theprobability distribution �(si). Using the Markov as-sumption, the value of state s under policy � can alsobe written recursively as follows:V �(s) = Xa2APr(aj�; s) [Ra(s)+
 Xs02S P a(ss0)V �(s0)# (1)In a POMDP the value of an observation X underpolicy � 2 � cannot be de�ned in a form similar toEquation 1. However, note that the value of a state sin the underlying MDP does not change just becauseit is inaccessible. If at any time step the environmententers state s the expected value of the subsequentdiscounted sequence of payo�s is still V �(s). Thereforewe propose that a suitable de�nition of the value ofobservation X under policy � is as follows:V �(X) =Xs2S P �(sjX)V �(s) (2)where P �(sjX) is the asymptotic occupancy proba-bility distribution, i.e., the probability that the stateof the underlying MDP is s when the observation isknown to be X. Note that Equation 2 is only a def-inition of V �(X), and not an algorithm, because thestate's s are not observable in POMDPs.The asymptotic occupancy distribution can be de�nedas follows:P �(sjX) = P (Xjs)P �(s)P �(X) = P (Xjs)P �(s)Ps02S P (Xjs0)P �(s0)where P �(s) is the limiting distribution over the un-derlying state space of the MDP, and is well de�nedunder Assumption 1.4.1 WHAT DOES TD(0) LEARN?Sutton's (1988) TD(0) algorithm is a RL algorithmthat is commonly used to evaluate a policy. It is aniterative stochastic approximation algorithm that does

not require knowledge of the MDP's transition proba-bilities, and takes the following form in Markov prob-lems:Vk+1(sk) = (1��(sk))Vk(sk)+�(sk)(Rk+
Vk(sk+1))where Vk(s) is the kth estimate of V �(s), sk and Rk arethe state and payo� at step k, and � is the learningrate. In Markov problems, under certain conditionson �, TD(0) will converge with probability one to V �,even if the policy � is stochastic. When applied toa non-Markov problem TD(0) will take the followingform: Vk+1(Xk) = (1 � �(Xk))Vk(Xk)+�(Xk)(Rk + 
Vk(Xk+1)):Theorem 1: In a POMDP of the type de�ned above,Sutton's TD(0) algorithm will converge to the solu-tion of the following system of equations with proba-bility one (under conditions identical to those requiredfor convergence of TD(0) in MDPs, plus the condi-tion that the learning rates, �, are non-increasing):8X 2 X ,V (X) = Xs2S P �(sjX) [R�(s)+
 XX02X P �(s;X 0)V (X 0)# ; (3)where P �(s;X 0) =Ps0(P �(s; s0)P (X 0js0)).Proof: Consider a semi-batch version of TD(0) thatcollects the changes to the value function for M stepsbefore making the change. By makingM large enoughthe states of the underlying MDP can be sampled witha frequency that matches P �(sjX) to within � withprobability 1 � �. In Appendix A:1 we prove con-vergence of the semi-batch TD(0) algorithm outlinedabove to the solution of Equation 3 with probabilityone. The semi-batch proof can be extended to on-lineTD(0) by using the analysis developed in Theorem 3 ofJaakkola et al. (1994). In brief, it can be shown thatthe di�erence caused by the on-line updating vanishesin the limit thereby forcing semi-batch TD(0) and on-line TD(0) to be equal asymptotically. The use of theanalysis in Theorem 3 from Jaakkola et al. (1994) re-quires that the learning rate parameters � are suchthat the �t(X)maxt2Mk�t(X) ! 1 uniformly w.p.1.; Mk isthe kth batch of size M. If �t(X) is non-increasing inaddition to satisfying the conventional TD(0) condi-tions, then it will also meet the above \asymptotic
atness" requirement. 2In general the solution to Equation 3 will not equalthe desired value function as de�ned in Equation 2.Figure 2 from Sutton (1994) presents an example thatillustrates a crucial di�erence between the value func-tion found by the TD(0) algorithm and the correct
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Figure 2: TD(0) and Hidden State. This �gure showsa POMDP in which it is clear that TD(0) cannot learnthe desired values. States 4a and 4b are in the sameobservation. TD(0) will learn a value function that as-signs the same value to observations 2 and 3 becauseboth lead to observation 4 with a zero payo�. There-fore, the fact that observation 2 leads reliably to apayo� of two with a delay of one time step while ob-servation 3 does not, will not be discerned by TD(0).value function (as de�ned by Equation 2). It shows asix state, �ve observation POMDP. TD(0), or for thatmatter any 1-step Markov algorithm will assign thesame value to observations 2 and 3 because both leaddeterministically into observation 4 with an immediatepayo� of zero. The true value function of observation2, however, will be higher than the true value functionof observation 3 because observation 2 reliably leadsto a payo� of two after a delay of one time step, whileobservation 3 does not.25 OPTIMAL CONTROL5.1 WHAT DOES Q-LEARNING LEARN?Q-learning (Watkins, 1989) is a RL algorithm for �nd-ing optimal policies in MDPs. One of the big ad-vantages of Q-learning is that it separates explorationfrom control. In short, the control policy followed dur-ing learning has no impact on asymptotic convergenceas long as every action gets executed in every statein�nitely often. No algorithm for POMDPs can re-tain that advantage because the control policy followed2Unlike TD(0), the more general family of TD(� > 0)(Sutton, 1988) algorithms average multi-step predictionsand will therefore learn a value function that assigns ahigher value to observation 2 than observation 3 in thePOMDP de�ned in Figure 2. However, for � < 1, TD(�)will still not be able to learn the value function de�nedby Equation 2. For POMDPs with absorbing goal states,o�-line TD(1), which is equivalent to the Monte Carlo al-gorithm that averages path-payo�s, will however �nd thedesired value function.

during learning will impact the occupancy probabili-ties that are a part of the de�nition of the return froma policy. To make analysis possible, consider the spe-cial case of applying Q-learning with a �xed stationarypersistent excitation learning policy, i.e., a policy thatassigns a non-zero probability to every action in everystate, and for which the underlying Markov chain is er-godic. Note that for POMDPs that satisfy Assumption1 all stationary policies that assign a non-zero proba-bility to every action in every state are persistently ex-citing. Following such a policy during learning wouldsatisfy the conditions required for w:p:1 convergenceof Q-learning in MDPs.Theorem 2: In a POMDP of the type de�ned above,if a persistent excitation policy � is followed duringlearning, the Q-learning algorithm will converge tothe solution of the following system of equations withprobability one (under the same conditions requiredfor convergence of Q-learning in MDPs, plus the con-dition that the learning rates, �, are non-increasing):8X 2 X ,Q(X; a) = Xs2S P �(sjX; a) [Ra(s)+
 XX02X P a(s;X 0) maxa02AQ(X 0; a0)#(4)where P �(sjX; a) is the asymptotic probability, un-der policy �, that the underlying state is s given thatthe observation-action pair is (X; a), and P a(s;X 0) =Ps0(P a(s; s0)P (X 0js0)).Proof: The proof for Theorem 2 is very similar tothe proof of Theorem 1. As in the case of TD(0) con-sider the semi-batch version of Q-learning that collectsthe changes to the value function for M steps beforemaking the change. By making M large enough thestates of the underlying MDP can be sampled with afrequency that matches P �(sjX; a) to within � withprobability 1 � �. In Appendix A we prove that thesemi-batch version of Q-learning outlined above con-verges to the solution of Equation 4 with probabilityone. The semi-batch proof can be extended to on-lineQ-learning by using the analysis developed in Theo-rem 3 of Jaakkola et al. (1994) in a manner similar tothat used in the proof of Theorem 1. 2The solution to Equation 4 su�ers from the same prob-lem as the solution to Equation 3 because Q-learningis also based on the 1-step Markov assumption. Anadditional problem with Q-learning is that it is basedon the assumption that a deterministic policy is beingsought. An interesting Q-value like quantity can bede�ned in POMDPs as follows:Q�(X;�0) = Xs2S P �(sjX)Q�(s; �0) (5)where Q�(s; �0) = R�0(s) + 
Ps02S P �0(s; s0)V �(s0).
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Note that Q�(X;�0) is the Q-value for a stochasticaction �0(X).5.2 WHAT IS AN OPTIMAL POLICY?In discounted MDPs, an optimal policy is simply onethat maximizes the value of each state simultaneously.Unfortunately, in discounted POMDPs it is no longerpossible to de�ne optimal policies in a similar way.Fact 5: In the class of POMDPs de�ned in Section 3,there need not be a stationary policy that maximizesthe value of each observation simultaneously.Proof: Figure 3 shows a four state, three observationPOMDP with two actions A and B. The only pol-icy decision is made in observation 1. Increasing theprobability of choosing action A in observation 1 in-creases the value of observation 1 and decreases thevalue of observation 2. Increasing the probability ofchoosing action B in observation 1 has the oppositee�ect. Therefore, with hidden state there may not bea policy that maximizes the value of each observationsimultaneously. 2
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Figure 3: No Policy that Maximizes the Value of EachObservation. This example shows that in general thereneed not be a policy that simultaneously maximizesthe value of each observation. This �gure shows a 4state, 3 observation POMDP. The only policy decisionis made in observation 1. Increasing the probability ofpicking action A increases the value of observation 1and decreases the value of observation 2. Decreasingthe probability of picking action A has the oppositee�ect.However, one could imagine that there might be a pol-icy in � that would simultaneouslymaximize the valueof each state, were they accessible. Even that is nottrue.Fact 6: In the class of POMDPs de�ned in Section 3,there need not be a stationary policy that maximizesthe value of each state in the underlying MDP simul-

taneously.Proof: Figure 4 shows a four state, three observationPOMDP with two actions A and B. The only policydecision is made in observation 2. The value of state2a inside observation 2 is maximized when action A ischosen with probability one, while the value of state 2bis maximized when action B is chosen with probabilityone. 2
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BFigure 4: No Policy that Maximizes the Value of EachState. This �gure shows a POMDP in which no policymaximizes the value of each state in the underlyingMDP simultaneously. The transition probabilities areshown in parenthesis. States 2a and 2b are in the sameobservation. There are two actions in observation 2.There is no setting of the policy for observation 2 thatsimultaneously maximizes the value of states 2a and2b.The di�culty in de�ning an optimal policy in dis-counted POMDPs can be explained with the help ofEquation 2. Changing a policy not only changes thevalue of each state in the underlying MDP, but alsothe occupancy distribution of states for each observa-tion. This dual e�ect makes it possible to trade o�the value of one observation with the values of otherobservations.5.3 DEFINING AN OPTIMAL POLICYDiscounted Payo� POMDPs: The evaluation of apolicy is a vector of values, one value for each state,and as shown above, in general, it is not possible tomaximize each element of the value vector simultane-ously. One way to overcome that problem is to convertthe vector of values into a scalar, e.g., by de�ning thevalue of a policy � as PX2X PXV �(X), where PX issome weight or measure of the importance of observa-tion X. Some obvious choices for PX are 1) the prob-ability of starting in observation X, and 2) the prob-ability of occupying observation X. The �rst optionpays undue attention to the starting observation in an
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in�nite-horizon problem. The second option, de�nes�� = argmax�2�PX2X P �(X)V �(X), and is shownin Fact 7 to be equivalent to maximizing the \averagepayo� per time step" criterion that is discussed in thenext paragraph. Other choices may exist for PX , butthey are unlikely to be reasonable for all POMDPs.Average Payo� POMDPs: A second policy evalu-ation criterion that has been studied in the MDP liter-ature (e.g., Bertsekas, 1987) and more recently in theRL literature (Schwartz, 1993; Singh, 1994) is the av-erage payo� per time step criterion. The average pay-o� under policy � is de�ned as limN!1E�fPNt=0RtN gand is known to be independent of the starting statefor MDPs that are ergodic for all stationary policies.The average payo� is a bounded scalar, and a policythat achieves the maximum value is an optimal policy.The average payo� per time step for a policy in � isuna�ected by the agent's inability to sense the stateof the environment.Let the average payo� for policy � be denoted ��.The relative value function in average payo� MDPs isde�ned as follows (see Bertsekas, 1987):V �(s) = Xa2APr(aj�; s) [(Ra(s) � ��)+Xs02S P a(s; s0)V �(s0)# :From here onwards we will use a subscript of 
to distinguish the value function for a discounteddecision problem. The de�nition of the relativevalue of an observation in an average payo� POMDPis the same as for a discounted payo� POMDP;V �(X) = Ps2S P �(sjX)V �(s). An optimal policy�� = argmax�2� �� .Fact 7: Let V �
 be the value function (as de�ned byEquation 2) for a given POMDP with a discount factorof 
. For the same POMDP, let �� be the averagepayo� per time step for policy � (without the discountfactor). Then, for each � 2 �,PX2X P �(X)V �
 (X) =��1�
 . Therefore maximizing PX2X P �(X)V �
 (X) isequivalent to maximizing the average payo� per timestep.Proof: By de�nition V �
 (X) = Ps2S P �(sjX)V �
 (s).Therefore,XX2X P �(X)V �
 (X) = XX2X P �(X)Xs P �(sjX)V �
 (s)= Xs XX P �(X)P �(sjX)V �
 (s)= Xs P �(s)V �
 (s)= Xs P �(s)R�(s) + 
Xs P �(s)

Xs0 P �(s; s0)V �
 (s0)= �� + 
Xs0 P �(s0)V �
 (s0)= �� + 
XX P �(X)V �
 (X): 26 DISCUSSIONIn this paper, we developed a new framework for learn-ing without state estimation in POMDPs by includingstochastic policies in the search space and by de�n-ing the value of an observation under a given policy.It was demonstrated that the return for a memory-less stochastic policy can be signi�cantly better thanthe return for any memory-less deterministic policy.However, it should be pointed out that the de�nitionof an optimal policy suggested in this paper is some-what arbitrary because the only reason to restrict thesearch space to stationary policies is computationaleconomics.Note that RL researchers (Sutton, 1990) andlearning automata researchers (e.g., Narendra andThathachar,1974; Barto and Anandan, 1985) haveused stochastic policies in the past, but as interme-diate policies to ensure su�cient exploration, and al-ways with the view that the ultimate goal is to learnthe best deterministic policy. However, researchersin game theory have studied zero-sum games wherethe optimal strategies are stochastic for the same rea-son that motivated the search for stochastic policiesin POMDPs: the lack of knowledge of the opponent'saction constitutes hidden state.Finally, we presented strong reasons why researchersshould use the average payo� criterion to formulateproblems that have hidden state, because of the di�-culty in de�ning optimal policies with the discountedpayo� criterion.7 ConclusionThe motivation for this study came from the follow-ing simple observation: the �rst-principles de�nitionof the value of a state under a �xed policy does not in-volve the Markov assumption and can be computedstatistically via Monte Carlo evaluation (Barto andDu�, 1994). This means that for any average pay-o� POMDP, given enough computational resourcesit is possible to determine the best policy from any�nite set of policies with an arbitrarily high degreeof con�dence. Unfortunately hidden state introducedtwo complications. First, the Markov assumption nolonger holds, and it was the Markov assumption thatallowed e�cient search of the policy space via conven-tional RL-based techniques. Second, in moving from
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deterministic to stochastic policies we have movedfrom a �nite policy space to an in�nite policy space. Inthis paper we developed a framework for assigning val-ues to observations in POMDPs that does not involvethe Markov assumption. In a subsequent paper, wepresent a new Monte Carlo algorithm for solving aver-age payo� POMDPs that can do an e�cient search ofthe in�nite stochastic policy space (Jaakkola, Singh,and Jordan, 1994) as de�ned in this paper.A Convergence of semi-batchQ-learningLetMk(X; a) be the number of times action a was exe-cuted in observation X within the kth batch of sizeM ,nk(sjX; a) be the number of times the actual underly-ing state was s when the observation-action pair was(X; a), and n(X;X 0ja) be the number of times a tran-sition took place from observation X to observationX 0 given that action a was executed. The persistentexcitation policy followed by Q-learning during learn-ing is denoted �. Then the Q-value of (X; a) after thekth batch is given by:Qk+1(X; a) = (1 �Mk(X; a)�k(X; a))Qk(X; a)+Mk(X; a)�k(X; a)"Xs n(sjX; a)Mk(X; a)rak(s)+
XX0 n(X;X 0ja)Mk(X; a) maxa0 Qk(X 0; a0)# ;where rak(s) is the sample average of the actual payo�sreceived on executing action a in state s in the kthbatch. Assume �Q(X; a) is the solution to Equation 4.LetFk(X; a) = Xs n(sjX; a)Mk(X; a)rak(s)+
XX0 n(X;X 0ja)Mk(X; a) maxa0 Qk(X 0; a0)� �Q(X; a);then, if Vk(X) = maxaQk(X; a) and �V (X) =maxa �Q(X; a),Fk(X; a) = 
XX0 n(X;X 0ja)Mk(X; a) [Vk(X 0)� �V (X 0)]+Xs ( n(sjX; a)Mk(X; a)rak(s) � P �(sjX; a)Ra(s))+
XX0 ((n(X;X 0ja)Mk(X; a) � P a(X;X 0j�)) �V (X 0));whereP a(X;X 0j�) = Xs P �(sjX; a)"Xs0 (P a(s; s0)P (X 0js0))# :

The expected value of Fk(X; a) can be bounded byjjEfFk(X; a)gjj � 
jjVk � �V jj+jjEfXs (n(sjX; a)Mk(X; a) � P �(sjX; a))Ra(s)gjj+
jjXX0 Ef((n(X;X 0ja)Mk(X; a) � P a(X;X 0j�)) �V (X 0))gjj� 
jjVk � �V jj+ C�Mk ;where �Mk is the larger ofmax(s;X;a) jEf n(sjX;a)Mk(X;a)g � P �(sjX; a)j, andmax(X;X0 ;a) jEf(n(X;X0ja)Mk(X;a) g � P a(X;X 0j�))j.For any � > 0, 9M� such that �M�k < � (because thesample probabilities converge with probability one).The variance of Fk(X) can also be shown to bebounded because the variance of the sample proba-bilities is bounded (everything else is similar to stan-dard Q-learning for MDPs). Therefore by Theorem1 of Jaakkola et al. (1994), for any � > 0, withprobability (1 � �), Qk(X; a) ! Q1(X; a), wherejQ1(X; a) � �Q(X; a)j � �C�. Therefore, semi-batchQ-learning converges with probability one. 2A.1 Convergence of semi-batch TD(0)The proof of convergence for semi-batch Q-learningcan be easily adapted to prove probability one con-vergence of semi-batch TD(0) to the solution of Equa-tion 3. Set the persistent excitation policy in the prooffor Q-learning to the policy being evaluated, and re-place Ra(s) by R�(s) and P a(X;X 0j�) by P �(X;X 0).Everything else follows. 2AcknowledgementsWe thank Rich Sutton for extensive comments andmany useful discussions. This project was supportedin part by a grant from the McDonnell-Pew Foun-dation, by a grant from ATR Human InformationProcessing Research Laboratories, by a grant fromSiemens Corporation, and by grant N00014-90-J-1942from the O�ce of Naval Research. The project wasalso supported by NSF grant ASC-9217041 in supportof the Center for Biological and Computational Learn-ing at MIT, including funds provided by DARPA un-der the HPCC program. Michael I. Jordan is a NSFPresidential Young Investigator.ReferencesBarto, A. G. & Anandan, P. (1985). Pattern recogniz-ing stochastic learning automata. IEEE Trans-actions on Systems, Man, and Cybernetics, 15,360{375.
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